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1 introduction

1.1 Overview

How do we measure the risk aversion of a decision maker—call him the “investor”—based on what we

know about his preferences? Suppose we are given an investors utility function over monetary payo�s in

di�erent states of nature which occur with known probabilities. �en we can argue that if the set of risky

gambles—call them “portfolios”—which investor A prefers over some status quo is a subset of the gambles

which investor B prefers over the same status quo, then investor A is more risk averse than investor B. A�er

all, there are risky gambles which investor B is willing to accept but investor A is not, but there are no risky

gambles which investor A is willing to accept but investor B is not. �is is, basically, Yaari’s (1969) de�nition

of “more risk averse than”.

�is is a very nice concept for theoretical treatments. For example, it is useful to analyse the ordering

of various classes of utility functions in terms of risk aversion (see, for example, Bommier et al. 2012). But

it is not operational in the sense that we usually do not observe an investor’s true utility function. What

is observable, however, and what we use as the primitives in this paper, are choices made by investors.

�e question is then how these observations can be used to compare the risk aversion of two investors.

A parametric approach could, for example, consist in specifying a particular utility function, deriving its

demand function for each set of o�ered portfolios, and then estimating the parameters of the demand

function to learn about the parameters of the underlying utility function. �e usefulness of this approach

depends, among other things, on how well the speci�ed utility function �ts the data.

�is paper takes a di�erent, nonparametric approach, which is very robust in the sense that it does

not depend on specifying a particular form of utility function. It uses choice data of investors to derive

revealed preference relations, shows how to test these relations for certain behavioural assumptions, and

how to use these relations to recover everything that can be said about the investor’s preference without

recovering anything that cannot be said. �is is a necessary step for the main contribution of this paper: We

use it to show how to compare the degree of risk aversion revealed by the choices of an investor with the

risk aversion revealed by any other investor. We can also compare the revealed risk aversion of an investor

with the risk aversion expressed in the form of a particular utility function. As it turns out, there are easily

testable conditions on the observations on an investor.

�e variant of Yaari’s (1969) de�nition of “more risk averse than” which is employed here states that

investor A is partially more risk averse than investor B if there are at least two portfolios x and y, where x
has a higher expected value than y, and A prefers y over x while B prefers x over y. A necessary �rst step
towards this comparative analysis is to test if the choices could indeed be the made by a risk averse utility

maximising investor. �is is because the de�nition is based on the idea that preferring a portfolio with a

lower expected value over a portfolio with a higher expected value signi�es risk aversion. A risk seeking

investor might prefer a portfolio with a lower expected value precisely because it is more risky. In Section 3

and A.1 we argue that this is indeed the appropriate way to de�ne risk aversion in our context.

For this necessary �rst step, we construct �rst or second order stochastic dominance (Fsd or Ssd)

relations. Given the environment in which the investor makes his choices, these relations are known a

priori and we can easily compute the set of all possible portfolios which have Fsd or Ssd over any particular

portfolio. We then show how these relations can be combined with revealed preference relations, and how

this allows us to test if an investor prefers portfolios which have Fsd or Ssd over other portfolios. �e axiom

derived for Ssd is shown to be a necessary and su�cient condition for risk aversion.
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�e central contribution of this paper is the comparative approach. �e test for consistency with Ssd is

a straightforward extension of standard revealed preference analysis and included because it is a necessary

�rst step for the comparative analysis. However, the analysis is of some interest in itself, as it provides a way

to test for risk aversion. It also allows to recover more about an investor’s preference relation and therefore

complements the revealed preference analysis of choice under uncertainty.

In the comparative analysis, we may �nd that neither of two investors is more risk averse than the

other. �en either (i) they have very similar preferences, or (ii) their extent of risk aversion is di�erent for

di�erent income ranges, or (iii) they act according to distinct notions of risk aversion. Case (i) is a helpful

result to classify two investors as belonging to the same category of risk preferences, as we cannot reject the

hypothesis that the two investors have the same risk preferences. Cases (ii) and (iii) highlight the problem

with a “one size �ts all approach”; in particular, they show that comparisons based on parameter estimates

rely on the speci�ed form of the utility function.

�e approach is illustrated with an application to the experimental data of Choi et al. (2007a). �e data

is tested for consistency with Ssd, which is con�rmed for most subjects, based on the Afriat E�ciency Index

(or Critical Cost E�ciency Index) supported by Monte-Carlo simulations. �e comparative risk aversion

approach is then applied to the data. We �nd that most experimental subjects are indeed comparable. If

neither of two subjects is more risk averse than the other, we �nd that in the used sample this is mostly

because they have similar preferences, i.e. they are classi�ed as case (i) above.

�e analysis provides a strong test of robustness for conclusions based on parameter estimates. Fur-

thermore, while the nonparametric approach does not give a distribution of parameters of risk aversion

in a population, it nonetheless allows to characterise the distribution of risk attitudes: �e nonparametric

approach tells us what percentage of the population is less or more risk averse than any given preference.
�is is illustrated by comparing the choices of subjects with several parameters of a utility function estimated

by Choi et al. (2007a).

It is the combination of several strands of the literature that distinguishes the approach in this paper.

�e theoretical literature on risk preferences, choice under uncertainty, and comparative risk aversion is

combined with the nonparametric analysis based on operational revealed preference theory. �is com-

bination can—and indeed is—applied to data. It is not claimed that the nonparametric approach should

replace other approaches. �e analysis here complements them and should, at the very least, be applied

before further steps are taken, as it allows to draw strong conclusions about preferences without the need of

restrictive assumptions on functional form.

1.2 Related Literature

�is paper is related to the theoretical literature on choice under uncertainty and the discussion of what

“risk” is, the comparative risk aversion literature, the revealed preference approach and the nonparametric

analysis of choice data within consumer demand theory, and the experimental literature on risk preferences

by subjects who are asked to make properly incentivised choices under controlled conditions.

Rothschild and Stiglitz (1970, 1971) provide a de�nition of “risk” and analyse its economic consequences.

In particular, they call a random variable y “more variable” than a random variable x if x is equal to y plus
a disturbance term with expected value of 0. �en y is a mean preserving spread (Mps) of x, and x has
second order stochastic dominance over x. For two random variables with the same mean, they show that
every element u in the set of all concave utility functions yields u(y) > u(x) if and only if x is an Mps of

y. De�ning risk aversion in terms of second order stochastic dominance is therefore the least restrictive
reasonable de�nition.
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Similarly, Hadar and Russell (1969) note that comparing uncertain prospects in terms of moments is

problematic if the utility function of an investor is not known. �ey de�ne dominance of portfolios in

terms of �rst- and second order stochastic dominance and show that any increasing utility function yields

u(y) > u(x) if and only if y has Fsd over x, and any increasing concave utility function yields u(y) > u(x)
if and only if y has Ssd over x. See also the early contribution of Hanoch and Levy (1969) in the same year
with similar results, and Levy (1992) for a survey.

Yaari (1969) answers the question of when an investor A is more risk averse than B within a framework

with one risky asset. Any investment in the risky asset is a gamble, and the acceptance set is the set of all

gambles which are preferred to the status quo by an investor. Yaari suggests to call investor A more risk

averse than investor B if the acceptance set of A is contained in the acceptance set of B. Similar approaches

to uncertainty and ambiguity aversion are developed by Epstein (1999), Ghirardato and Marinacci (2002),

and Grant and Quiggin (2005)

A seminal article by Pratt (1964), and similarly the work by Kihlstrom and Mirman (1974), analyses

a measure of risk aversion based on certainty equivalents. In a recent paper, Bommier et al. (2012) pro-

vide a formal framework for analysing comparative risk aversion of di�erent investors, with a focus on

intertemporal choice. �ey use their approach to analyse several classes of utility functions common in the

literature.

In the revealed preference approach it is assumed that the researcher observes a �nite set of alternatives

a decision maker has and the alternative which he actually chooses. �e data are then used to construct the

revealed preference relation. An advantage of the approach is that we do not need to assume any particular

functional form of utility; the revealed preference approach therefore lends itself to a nonparametric analysis

of choice data. Afriat’s (1967) analysis, for example, makes the revealed preference approach operational

when the sets of alternatives are competitive budget sets. Varian (1982, 1983a) re�nes this approach and

provides highly valuable tools for the nonparametric analysis of such data. Clark (2000) considers the

problem of recovering expected utility from observed choice behaviour, but does not provide extensive tools

for the analysis of revealed preference data.

Varian (1983b) provides a condition which is necessary and su�cient for the existence of an expected

utility function which rationalises a set of investment decisions. His condition is expressed as a linear

feasibility system which has to have a solution. He applies his framework to a mean variance model of utility

maximisation. �e approach described here is more directly rooted in the axiomatic revealed preference

approach and shows how to enrich revealed preference relations with Fsd- and Ssd-relations, and the

recovered preferred and worse sets are shown to be useful for comparative risk aversion.

Experimental economics allows researchers to collect choice data of subjects under controlled conditions.

“Induced budget experiments”, where subjects are asked to make choices on competitive budget sets, are

increasingly common.1 Such experiments allow to collect extensive data on individuals’ preference. Choi

et al. (2007a), in particular, collect ��y decisions of each of ninety three subjects in an induced budget

experiment on choice under uncertainty. �ey test the data for consistency with Garp. Furthermore, they

estimate parameters of utility functions to characterise the distribution of risk preferences.

1.3 Outline

�e rest of the paper is organised as follows: Section 2.1 introduces the framework and the notation. Section

2.2 reviews the necessary revealed preference literature and extends the approach using stochastic dominance

1See, for example, Sippel (1997), Harbaugh et al. (2001), Andreoni and Miller (2002), Février and Visser (2004), Chen et al.
(2006), Choi et al. (2007a), Fisman et al. (2007), Banerjee and Murphy (2011).
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relations. It derives the Fsd-Garp and Ssd-Garp, both of which are testable and which correspond to

Varian’s (1982) Generalised Axiom of Revealed Preference (Garp). In particular it is shown that Ssd-Garp is

necessary and su�cient for the existence of a monotonically increasing and concave utility function which

rationalises the observations and which obeys second order stochastic dominance; Ssd-Garp is therefore a

necessary and su�cient condition for risk aversion. Section 3 introduces the nonparametric approach to

compare the extent of risk aversion of two investors. Section 4 applies the methods to the experimental data

of Choi et al. (2007a). Section 5 discusses the results and concludes. All proof can be found in the appendix

in Section A.

2 theory: preliminaries

2.1 Basic De�nitions

A set of observed investment choices consists of a set of chosen portfolios of assets and the prices and

incomes at which these assets were chosen.2 �e asset space is RL+ and the price space is RL++, where
L ≥ 2 denotes the number of di�erent assets.3 Investors choose portfolios x i = (x i1 , . . . , x iL)

′ ∈ RL+ of asset
quantities when facing an asset price vector pi = (pi1 , . . . , piL) ∈ RL++; these choices are the demand we
observe. A budget set is then de�ned by Bi = B(pi) = {x ∈ RL+ ∶ pix ≤ 1}; we will sometimes refer to a

budget using the characterising price vector. �e entire set of N observations on an investor is denoted as
Ω = {(x i , pi)}Ni=1. We assume that demand is exhaustive (i.e., pix i = 1). Let intBi denote the interior of Bi .

�ere are L di�erent states which can obtain a�er the portfolio choice has been made. In each state
i = 1, . . . , L, asset i is the only asset that pays o�. State i occurs with probability πi ∈ ∆(L), where ∆(L) is
the (L − 1) probability simplex, i.e., πi ≥ 0 for all i and∑L

i=1 πi = 1. �e probability vector π is known to the
investor and the observing researcher. To summarise the information used in this framework: We observe

the number of possible states, the probabilities with which each of these states occurs, and N choices made
by an investor for N di�erent price vectors of the assets. Strictly speaking, we also need to assume that we
observe the amount of money invested, which is used to normalise the price vector of the assets such that

pix i = 1. Given that we observe the possible states and the probability vector, stochastic dominance relations
are known by de�nition (see below).

Note that the asset space RL+ and the space of state contingent payo�s are the same. A portfolio
x = (x1, . . . , xL) speci�es the amounts invested in L di�erent assets, where an asset is a state-contingent
claim. We can de�ne an asset as a column vector X⋅,i = (X1,i , . . . , XL,i)

′ which speci�es the payo� in the
di�erent states 1, . . . , L, and xi is the amount of money invested in this asset. In the present framework,
asset i is simply given by Xi ,i = 1 and X j,i = 0 for j ≠ i, and X is the identity matrix. �ese basic assets are
also known as Arrow-Debreu securities. �e payo� in state j of a portfolio x is then (X j,⋅)x = x j. Instead of
de�ning investors’ preferences over payo�s in the di�erent states, we can equivalently de�ne the preferences

over portfolios.

�is setup is much more general than it may appear: Suppose that instead of Arrow-Debreu securities,

there are K ≥ 2 linearly independent general assets Y⋅,i . Asset Y⋅,i pays o� Yj,i ≥ 0 in state j. If we allow
short-selling of these assets, that is, to invest in a negative amount of some of the general assets, we need

a no arbitrage (no free lunch) condition. If this condition holds, and if there are at least K = L linearly

2“Portfolios” correspond to the term “lotteries”.
3We use the following notation: For all x , y ∈ RL , x ≧ y if x i ≥ y i for all i = 1, . . . , L; x ≥ y if x ≧ y and x ≠ y; x > y if x i > y i

for all i = 1, . . . , L. We denote RL
+ = {x ∈ RL

∶ x i ≧ (0, . . . , 0)} and RL
++ = {x ∈ RL

∶ x > (0, . . . , 0)}.
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independent general assets, then the problem of choosing a portfolio of general assets is isomorphic to a

problem of choosing a portfolio of Arrow-Debreu securities. Note that we can even account for safe assets,

that is, assets which will pay the same amount no matter what state occurs: �is is simply a general Y⋅,i with
Yj,i = c > 0 for all states j. �us, the assumption that demand is exhaustive (pix i = 1) is justi�ed; we do not
need to account for the possibility that the investor only invests a part of his wealth in risky assets.

�en if instead of choices over basic Arrow-Debreu securities we observe choices over more general

assets, we can transform the observations into an equivalent set of observations over (�ctional) Arrow-

Debreu securities. �is follows from the work of Ross (1978), Breeden and Litzenberger (1978), and Varian

(1987), among others. �e appendix (Section A.1) contains amore detailed exposition of these facts. We carry

out the analysis in terms of Arrow-Debreu assets as it simpli�es the notation, allows to specify preferences

directly over portfolios, and corresponds to the experiments conducted by Choi et al. (2007a).

We assume that an investor can be represented by transitive, complete, and continuous binary relation4

on RL+. �is binary relation ≿ ∈ RL+ × RL+ represents his preference according to which he decides which
portfolio to choose on a budget. �e interpretation is as usual, i.e. (x , y) ∈ ≿, also written x ≿ y, means that
to the investor x is at least as good as y. For ≿ (and similarly for all other complete relations de�ned below)
≻ denotes the asymmetric part of ≿ and ∼ denotes the symmetric part, i.e., x ≻ y if x ≿ y and [not y ≿ x],
and x ∼ y if x ≿ y and y ≿ x.
For a given probability vector π, let E(x) = ∑ πixi be the expected value of a portfolio x ∈ RL+. For

convenience, we de�ne the relation ≿E ∈ RL+ ×RL+ as

x ≿E y if E(x) ≥ E(y).

Let ∼E and ≻E denote the symmetric and asymmetric part of ≿E, respectively.

Let Π(x) be the ex post payo� of the portfolio x. For a given π, let F ∶ R×RL+ → [0, 1] be the cumulative

distribution function of a portfolio, i.e., F(ξ, x) = Prob(Π(x) ≤ ξ) is the probability that the payo� from a
portfolio x ∈ RL+ is less than or equal to ξ ∈ R. Let ξi ∈ R+, for i = 1, . . . , n ≤ 2 L, be one of the payo�s of
two portfolios x and y, i.e., ξi ∈ {x1, . . . , xL} ∪ {y1, . . . , yL}, sorted in increasing order, with n denoting the
number of distinct xi and yi . �at is, when we compare any two portfolios x and y, an ξi is one of the ex
post payo�s; with two portfolios there is at least one distinct ex post payo� and there are at most 2L distinct
payo�s. �en let ≿FSD and ≿SSD be binary relations on RL+, de�ned as

x ≿FSD y if F(ξi , x , π) ≤ F(ξi , y, π) for all ξi

and

x ≿SSD y if
ℓ
∑
i=1

F(ξi , x , π)[ξi+1 − ξi] ≤
ℓ
∑
i=1

F(ξi , y, π)[ξi+1 − ξi] for all ℓ < n and ξi .

�e relations are called the �rst and second order stochastic dominance relations, respectively (see Hadar and
Russell 1969): x hast �rst order stochastic dominance (Fsd) over y if x ≿FSD y, and second order stochastic
dominance (Ssd) if x ≿SSD y. Suppose x has Fsd (Ssd) over y. �en every expected utility maximiser with
a monotonically increasing (and concave) utility function will prefer x over y (see, for example, Hanoch

4A binary relation ≿ is transitive if [x ≿ y and y ≿ z] implies x ≿ z; it is complete if for every two bundles x , y, either x ≿ y or
y ≿ x; it is continuous if for all x the sets {y ∶ x ≿ y} and {y ∶ y ≿ x} are closed.
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and Levy 1969). If x ≿SSD ∩ ∼E y, that is, x has Ssd over y and the same expected value, then y is amean
preserving spread (Mps) of x, and x is amean preserving contraction (Mpc) of y.

Axiom 1 A preference ≿ satis�es the Axiom of First Order Stochastic Dominance (Afsd) if ≿FSD⊂≿. A
preference ≿ satis�es the Axiom of Second Order Stochastic Dominance (Assd) if ≿SSD⊂≿.

Note that Assd⇒ Afsd but not vice versa. We will also say that investors whose preferences satisfy

Afsd or Assd are Fsd-rational or Ssd-rational.

For the following analysis, it is convenient to describe the set of all portfolios which have second order

stochastic dominance over some reference portfolio x. Because we will also need the set of all portfolios
which are ranked above some x by other binary relations, we de�ne a more general set, which conveniently
depends on some arbitrary binary relation Q. For a given π, let

P(x , Q) = {y ∈ RL
+ ∶ yQ x}.

�enP(x , ≿SSD) is the set of all portfolios which have Ssd over x, andP(x , ≿SSD ∩ ∼E) is the set of portfolios

which have Ssd over x and the same expected value as x. (i.e., the set of all Mpcs of x).
We record a �rst lemma to be used later but independently worth mentioning.

Lemma 1 �e relation ≿SSD is quasi-concave, i.e., P(x , ≿SSD) is a convex set for all π ∈ ∆(L).

�e convex hull CH of a set of points Y = {yi} and its convex monotonic hull CMH are de�ned as

CH(Y) = {x ∈ RL
+ ∶ x = ∑

i
λi yi , λ ≥ 0,∑

i
λi = 1}

CMH(Y) = interior of CH({x ∈ RL
+ ∶ x ≧ yi for some i}),

and CMH is the closure of CMH. Again, we will later need the convex monotonic hull of a set of portfo-

lios which are ranked higher than x by some binary relation Q. �us, for some Q on RL+ we also write
CMH(x , Q) = CMH ({y ∈ RL+ ∶ yQ x}).
Before we turn to the necessary de�nitions for our rationalisability results below, we consider the two

simple examples with L = 2 in Figure 1 (ignore the indicated M̂ for now) to illustrate the set P(x , ≿SSD)
and the usefulness of the convex monotonic hull. In Figure 1.(a), the probability vector is π = (1⁄2 , 1⁄2);

suppose that the indicated portfolio x0 is (x1, x2) = (45, 25). Clearly, in terms of stochastic dominance, the

portfolio (x2, x1) = (25, 45)must be considered equivalent to the portfolio x, as both portfolios have the
same expected value and the same cumulative distribution function. It is also clear that every portfolio

which consists of a convex combination of (45, 25) and (25, 45) is an Mpc of x. Furthermore, portfolios
which dominate an Mpc of x (i.e., portfolios which pay o� at least the same amount as the Mpc in both

states and more in at least one state), have Ssd over x. �us, every portfolio in the the convex monotonic
hull of the set of all Mpcs of x must have Ssd over x. One can show that this relation also holds in the
opposite direction, that is, P(x , ≿SSD) = CMH(x , ≿SSD ∩ ∼E) (see Lemma 2 below). �e set P(x , ≾SSD),
which is also shown in the �gure, is the set of all portfolios over which x has Ssd; note that z ∈ P(x , ≾SSD) if
and only if x ∈ P(z, ≿SSD).
If the probabilities for each state are the same, the problem remains simple for L > 2: P(x , ≿SSD) will

always be the convex monotonic hull of all permutations of x. �e problem becomes more complicated
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when we consider di�erent probabilities, as in Figure 1.(b) with π = (1⁄3 , 2⁄3). Suppose that x = (45, 25); then

we need to �nd anMpc y of x such that y2 is maximal in order to describe the set of all Mpcs of x as a convex
combination of two portfolios. �is y can be shown to be (25, 35). What remains the same in comparison
with the example with π = (1⁄2 , 1⁄2), and what will turn out to be generally true, is that P(x , ≿SSD) is the
convex monotonic hull of all Mpcs of x.

x1

x2

P(x0 , ≾SSD)

P(x0 , ≿SSD)

x

y ∈ M̂(x)

(a)

x1

x2

x

y ∈ M̂(x)

P(x0 , ≾SSD)

P(x0 , ≿SSD)

(b)

Figure 1: Example with probabilities (π1 , π2) = (1⁄2 , 1⁄2) (a) and (π1 , π2) = (1⁄3 , 2⁄3) (b). �e dashed line shows all portfolios with
the same expected value as the portfolio x. Both �gures show the set of portfolios which have second order stochastic dominance
over x, and the set of portfolios over which x has second order stochastic dominance.

�e following de�nition is somewhat cumbersome, but it necessary for our purposes. We give several

examples below to illustrate it. It generalises the two examples in Figure 1. De�ne recursively for some

sequence of indices {i j}nj=1, n ≤ L − 1, 1 ≤ i j ≤ L,

M(x , {i1}) = {y ∈ RL
+ ∶ y = argmax{ ỹ ∈P(x ,≿SSD∩∼E)} ỹi1},

M(x , {i j}nj=1) = {y ∈ RL
+ ∶ y = argmax{ ỹ ∈M(x ,{i j}n−1j=1 )} ỹin}.

Let M̂(x) denote the union of allM(x , {i j}L−1j=1 ) for every permutation of indices from 1 to L.
�e understand the construction ofM, consider �rst the two dimensional case (L = 2). Consider the

set of portfolios which have the same expected value as x and have Ssd over x (i.e., P(x , ≿SSD ∩ ∼E)). Of

these portfolios, M(x , {1}) and M(x , {2}) select the ones that have the maximal payo� in state 1 and 2,
respectively. Note that M(x , {i}), i = 1, 2, are singletons, and one of these sets contains x if x1 ≠ x2; if
x1 = x2,M(x , {1}) = M(x , {2}) = x. �is is shown in both parts of Figure 1 for the portfolio x.
For L = 3,M(x , {1}) again selects the set of all portfolios in P(x , ≿SSD ∩ ∼E) which have the maximal

payo� in state 1; here,M(x , {1}) is not necessarily a singleton. �en,M(x , {1, 2}) selects the one portfolio
in M(x , {1}) which has the maximal payo� in state 2. One more example for L = 4: M(x , {1, 4, 2})
selects the one portfolio in M(x , {1, 4}) which has the maximal payo� in state 2 (i.e., take the set of
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portfolios inP(x , ≿SSD ∩ ∼E) which have the maximum payo� in state 1; of those take those which have the

maximum payo� in state 4; of those take the portfolio which has the maximum payo� in state 2). Note that

M(x , {i j}L−1j=1 ) is always a singleton.
By construction y ∈ M(x , {i j}L−1j=1 ) is an Mpc of x, and x is an Mps of y. �e intuition which we

developed above can now be generalised in the following Lemma 2.

Lemma 2 For all x ∈ RL+,
(i) P(x , ≿SSD ∩ ∼E) = CH(M̂(x)),
(ii) P(x , ≿SSD) = CMH(x , ≿SSD ∩ ∼E), and thus P(x , ≿SSD) = CMH(M̂(x)).

2.2 Revealed Preference

Revealed preference relations, like preferences, are binary relations on RL+ which we observe due to an
investor’s choices Ω = {(x i , pi)}Ni=1 combined with theoretical reasoning about what these choices reveal.
Let Q ⊆ RL+ ×RL+ be any binary relation. �en the transitive closure (Q)+ of Q is de�ned as the smallest
transitive relation that contains Q, that is, x(Q)+y if there are x′, . . . , x′′′ such that xQ x′, x′Q x′′, . . .,
x′′′Q y. We the use the following de�nitions to recover an investor’s preference that is implicit in a set of
portfolio choices:

• �e portfolio x i is directly revealed preferred to a portfolio x, written x i R0 x, if pix i ≥ pix.
• �e portfolio x i is strictly directly revealed preferred to a portfolio x, written x i P0 x, if pix i > pix.
• Let R = (R0)+. �en the portfolio x i is revealed preferred to a portfolio x if x i R x.
• �e portfolio x i is strictly revealed preferred to a portfolio x, written x i P x, if for some sequence of
observations x i R x j , x j P0 xk , xk R x.

Axiom 2 (Varian 1982) A set of observations Ω satis�es the Generalised Axiom of Revealed Preference
(Garp) if [not x i P0 x j] whenever x j R x i .

�e strength of Garp is based on the fact that it is an easily testable condition and is a necessary and

su�cient condition for utility maximisation, as Afriat’s�eorem demonstrates. We say that a utility function

u ∶ RL+ → R rationalises a set of observations Ω if u(x) ≥ u(y) whenever x R y. LetU denote the set of all
continuous, non-satiated, monotonic, and concave utility functions.

�eorem 1 (Afriat 1967, Diewert 1973, Varian 1982)�e following conditions are equivalent:
1. there exists a u ∈U which rationalises the set of observations Ω;
2. the set of observations Ω satis�es Garp.

�e revealed preference relations can be extended by imposing axioms Afsd or Assd. If the hypotheses

are correct, then R is the subset of some preference ≿. If the investor’s preference satis�es �rst order stochastic

dominance, then ≿FSD is a subset of the same preference ≿. �us (R∪ ≿FSD) ⊂≿, and similarly for ≿SSD.

De�ne

RFSD = (R∪ ≿FSD)
+
, RSSD = (R∪ ≿SSD)

+
, P

0
FSD = P

0
∪ ≻FSD, P

0
SSD = P

0
∪ ≻SSD,

PFSD = {(x , y) ∈ RL
+ ×RL

+ ∶ x RFSD z P0FSD z′ RFSD y for some z, z′ ∈ RL
+}, (1)

PSSD = {(x , y) ∈ RL
+ ×RL

+ ∶ x RSSD z P0SSD z′ RSSD y for some z, z′ ∈ RL
+}.
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Let σℓ(x) denote the ℓth permutation of x, with σ1(x) = x. Let L! denote the factorial of L. De�ne

σ(Ω) = {y ∈ RL
+ ∶ y = σℓ(x i) for some i = 1, . . . ,N and some ℓ = 1, . . . , L!} .

We will refer to the elements in σ(Ω) as si ; the ith element of σ(Ω) will be denoted σ(Ω)i . Note that all

x i ∈ σ(Ω); let the set be sorted such that σ(Ω)i = x i for i = 1, . . . ,N . De�ne

τ(Ω) = {y ∈ RL
+ ∶ y ∈ M̂(x i) for some i = 1, . . . ,N} .

We will refer to the elements in τ(Ω) as t i . Again we have x i ∈ τ(Ω); let τ(Ω) be sorted in the same way as

σ(Ω).

Axiom 3 A set of observations Ω satis�es the Fsd-Garp if for all si ∈ σ(Ω),

[not si PFSD s j] whenever s j RFSD si .

It satis�es the Ssd-Garp if for all t i ∈ τ(Ω),

[not t i PSSD t j] whenever t j RSSD t i .

We say that a utility function u Fsd-rationalises a set of observations Ω if u(x) ≥ u(y) whenever
x RFSD y; it Ssd-rationalises Ω if u(x) ≥ u(y) whenever x RSSD y.

�eorem 2 �e following conditions are equivalent:
1. there exists a u ∈U which Fsd-rationalises (Ssd-rationalises) the set of observations Ω;
2. the set of observations Ω satis�es Fsd-Garp (Ssd-Garp).

Note that �eorem 2 shows that Ssd-Garp is a necessary and su�cient condition for risk aversion in

the Ssd-sense.

Following Varian (1982), we now turn to the question of recoverability of preferences. Given some

portfolio x0 ∈ RL+ which was not necessarily observed as a choice, the set of prices which support x0 is
de�ned as

S(x0) = {p0 ∈ RL
++ ∶ {(x i , pi)}Ni=0 satis�es Garp and p0x0 = 1},

SFSD(x0) = {p0 ∈ RL
++ ∶ {(x i , pi)}Ni=0 satis�es Fsd-Garp and p0x0 = 1},

SSSD(x0) = {p0 ∈ RL
++ ∶ {(x i , pi)}Ni=0 satis�es Ssd-Garp and p0x0 = 1}.

Varian (1982) uses S(x0, ) to describe the set of all bundles (here: portfolios) which are revealed worse and
revealed preferred to a portfolio x0: If for any price vector at which x0 can be demanded without violating
Garp x0 must be revealed preferred to x, then x is in the set of all portfolios revealed worse to x0, and
similarly for revealed preferred sets. �us, we can de�ne the revealed preference analogy toP(x , ≿): �e
set of all portfolios which are revealed worse than x0 is given by

RW(x0, R) = {x ∈ RL
+ ∶ for all p0 ∈ S(x0), x0 P x}
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and the set of all portfolios which are revealed preferred to x0 is given by

RP(x0, R) = {x ∈ RL
+ ∶ for all p ∈ S(x), x P x0}.

Similarly, we de�ne

RW(x0, RFSD) = {x ∈ RL
+ ∶ for all p0 ∈ SFSD(x0), x0 P x},

RW(x0, RSSD) = {x ∈ RL
+ ∶ for all p0 ∈ SSSD(x0), x0 P x},

and

RP(x0, RFSD) = {x ∈ RL
+ ∶ for all p ∈ SFSD(x), x P x0},

RP(x0, RSSD) = {x ∈ RL
+ ∶ for all p ∈ SSSD(x), x P x0}.

�ese de�nitions are well motivated by the equivalence of Garp with the existence of a concave utility

function which rationalises the data: Any utility function which rationalises a set of observations must have
u(x) > u(x0) if x ∈RP(x0, R), etc. See Figure 2 for an example.

RW(x0 , RSSD)

RP(x0 , RSSD)

x1

x2

x0 x1 B(p1)

(a)

x1

x2

x0

x1

B(p1)
RW(x0 , RSSD)

RP(x0 , RSSD)

(b)

Figure 2: Example with probabilities (π1 , π2) = (1⁄2 , 1⁄2) (a) and (π1 , π2) = (1⁄3 , 2⁄3) (b). Revealed preferred and revealed worse set
of x0 with one observation (x 1 , p1), based on the extended relation RSSD . �e dashed regions show what is added by combining R
and ≿SSD.

�e next proposition shows that we can express theRP sets conveniently as convex monotonic hulls of
a �nite set of points.

Proposition 1 For all x ∈ RL+, if the set of observations Ω satis�es
(i) Garp, then CMH(x0,R) ⊆RP(x0,R) ⊆ CMH(x0,R);
(ii) Fsd-Garp, then CMH(x0,RFSD) ⊆RP(x0,RFSD) ⊆ CMH(x0,RFSD);
(iii) Ssd-Garp, then CMH(x0,RSSD) ⊆RP(x0,RSSD) ⊆ CMH(x0,RSSD).
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Varian (1982) and Knoblauch (1992) prove part (i) of the proposition. We omit the proof for the other

parts, which are along the lines of Knoblauch’s (1992) proof; Lemma 2 makes the extension quite simple.

3 theory: interpersonal comparison

Let ⊵ ∈ ⨉
4
i=1RL+ be themore risk averse than relation. For two preferences ≿ and ≿̂ which satisfy Assd (and

therefore Afsd), de�ne

≿ ⊵ ≿̂ if [≿̂ ∩ ≺E] ⊆ [≿∩ ≺E].

�at is, an investor ≿ is more risk averse than an investor ≿̂ if the set of portfolios with a lower expected

value than x which are preferred to x by ≿̂ is a subset of the corresponding set of ≿. Clearly, this construction
makes sense only if the two investors are not risk seeking, which is why we need the test for Ssd-rationality

of the previous section. Let ⊳ be the asymmetric part of ⊵, that is, ≿ is strictly more risk averse than ≿̂, written
≿ ⊳ ≿̂, if ≿ ⊳ ≿̂ and [not ≿̂ ⊳ ≿].

�e de�nition ofmore risk averse is closelymodelled on Yaari’s (1969) concept, who considers acceptance

sets of gambles. If investor A prefers all gambles over the status quo which investor B also prefers over the

status quo, and there are additional gambles which A prefers but B does not, then B is more risk averse

than A. �e de�nition of ⊵ translates this concept to the framework considered here. Note that we do not

claim that preferring a higher expected value over lower expected value is a sign a risk aversion, but that a risk
averse utility maximiser who prefers a lower expected value over a higher expected value does so because the
preferred portfolio is less risky. And if we observe choices of two investors, of which both are risk averse
utility maximisers, and the �rst one strictly prefers a portfolio with a lower expected expected value over a

portfolio with a higher expected value while the second one does not, then we conclude that the �rst one is

at least partially more risk averse.

Note that given our de�nitions of budgets, an investor who has to choose a portfolio from a budget

always has the option of choosing a riskless portfolio which pays o� the same amount in all states. �is

riskless portfolio can be considered as the status quo in any situation where the investor has to choose a

portfolio from a budget. �en the set of all other portfolios in the budget which the investor prefers to the

riskless portfolio is the acceptance set. Any risk averse utility maximiser will only prefer portfolios over the

riskless portfolio which are not stochastically dominated by the riskless portfolio; but then these portfolios

must have a higher expected value than the riskless portfolio. We illustrate this in the Appendix A.1.

We will now consider two investors, on which we have sets of observations Ω and Ω̂, and we will refer

to these two investors by their revealed preference relations R and R̂. LetRP(x , R) andRW(x , R) be the
revealed preferred and worse set of the investor with the revealed preference relation R, and analogously for

R̂. LetRPL(x , R) = RP(x , R) ∩P(x , ≺E) and RWL(x , R) = RW(x , R) ∩P(x , ≺E), and analogously
for R̂.

How can ⊵ be made operational given a �nite set of observations on an investor and the revealed

preference relation based on these observations? One problem is that R is only an incomplete relation, and

therefore x ∉RP(x , R) does not imply x ∈RW(x , R). �us, we cannot base the statement that investor R
is more risk averse than R̂ on the fact that ˆRPL(x , R̂) ⊂RPL(x , R). �is condition alone cannot exclude
the possibility that the two investors make choices according to the complete preferences ≿ and ≿̂ such that

P(x , ≿̂) ⊇ P(x , ≿). We therefore introduce a more careful concept: If, for some portfolio x, there is a y with
a lower expected value than x which is preferred to x by investor R, and at the same time investor R̂ prefers
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x to y, then investor R is at least partially more risk averse than R̂. If R is partially more risk averse than R̂,
but R̂ is not partially more risk averse than R, then we conclude that R is more risk averse than R̂.

De�ne ⊵RA∈ RL+ ×RL+ as

R ⊵RA R̂ if there exists x ∈ RL
+ such that RPL(x , R) ∩ ˆRWL(x , R̂) ≠ ∅; (2)

if R ⊵RA R̂, we say that R is partially revealed more risk averse than R̂. �en R is revealed more risk averse
than R̂, written R ⊳RA R̂, if R ⊵RA R̂ and [not R̂ ⊵RA R].

De�ne

δ(Ω, Ω̂) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if there are x i ≺E x̂ j and ([x i R x̂ j and x̂ j P̂ x i] or [x i P x̂ j and x̂ j R̂ x i]),
0 otherwise,

where x i is a choice in Ω and x̂ j is a choice in Ω̂.

�e following theorem only considers data which satisfy the Ssd-Garp. To see why, consider two

portfolios x and y and let L = 2, π = (1⁄3 , 2⁄3), x = (12, 0) and y = (6, 6), such that y ≻E x and y ≻SSD x.
An investor may prefer x over y even though y has a higher expected value, but this cannot be the result of
risk aversion. Such an investor can satisfy Garp, but not Ssd-Garp, and his behaviour cannot (should not)

be considered a sign of risk aversion.

�eorem 3 Suppose Ω and Ω̂ satisfy Ssd-Garp.
1. �e following conditions are equivalent:

(i) δ(Ω, Ω̂) = 1 and δ(Ω̂, Ω) = 0;
(ii) RSSD ⊳RA R̂SSD;
(iii) there exist u, û ∈U which Ssd-rationalise Ω and Ω̂, respectively, and there do not exist v , v̂ ∈U

which Ssd-rationalise Ω and Ω̂, respectively, such that for all x , y ∈ RL+ with E(x) < E(y),
û(x) > û(y) ⇒ u(x) > u(y) and v(x) > v(y) ⇒ v̂(x) > v̂(y).

2. �e following conditions are equivalent:
(i) δ(Ω, Ω̂) = δ(Ω̂, Ω) = 1;
(ii) RSSD ⊵RA R̂SSD and R̂SSD ⊵RA RSSD;
(iii) there do not exist u, û ∈U which Ssd-rationalise Ω and Ω̂, respectively, such that for all x , y ∈ RL+

with E(x) < E(y), û(x) > û(y) ⇒ u(x) > u(y) or u(x) > u(y) ⇒ û(x) > û(y).
3. �e following conditions are equivalent:

(i) δ(Ω, Ω̂) = δ(Ω̂, Ω) = 0;
(ii) [not RSSD ⊵RA R̂SSD] and [not R̂SSD ⊵RA RSSD];
(iii) there exist u, û ∈ U and v , v̂ ∈ U which Ssd-rationalise Ω and Ω̂, respectively, such that for all

x , y ∈ RL+ with E(x) < E(y), û(x) > û(y) ⇒ u(x) > u(y) and v(x) > v(y) ⇒ v̂(x) > v̂(y).

�eorem 3 is quite powerful: It shows that it is necessary and su�cient to compare only choices observed

by one of the two investors, even though the de�nition of ⊵RA uses all x ∈ RL+. �e theorem therefore
provides a nonparametric way to compare the risk aversion of two investors with only a �nite number of

comparisons. �e third statement in the three parts of �eorem 3 provides strong support for the suggested

de�nition of “revealed more risk averse than”. For example, (1).(iii) shows that if we �nd that RSSD ⊳RA R̂SSD,

then there exists utility functions u and û for the two investors which represent the investors choices such
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that, whenever y has a higher expected value than x and u prefers x over y, then so does û. Furthermore,
there does not exist a pair of utility function v and v̂ such that whenever v̂ prefers x over y, so does v.
We say that two investors are (a) similar if [not RSSD ⊵RA R̂SSD] and [not R̂SSD ⊵RA RSSD] and (b) not

comparable if RSSD ⊵RA R̂SSD ⊵RA RSSD. Cases (a) and (b) are the two possible cases if [not RSSD ⊳RA R̂SSD]

and [not R̂SSD ⊳RA RSSD].

Case (a) implies that the two investors have very similar preferences which do not, in the strict sense,

disagree which each other. �e two investors are, in a di�erent sense, still comparable: �e comparison

leads to the conclusion that the preferences of the two investors are not su�ciently di�erent. Indeed, we

cannot reject the hypothesis that the two investors have the same preferences underlying their choices, and

we can �nd rationalising utility functions which either imply that the �rst investor is more risk averse than

the second or vice versa (see �eorem 3.3.iii). Case (b) implies that either (1) the extent of risk aversion of at

least one of the investors is not constant over the entire income range, or (2) that the two investors have

di�erent notions of risk.

Figure 3.(a) gives an example of choices of two investors such that one is revealed more risk averse than

the other. Assume for simplicity that π = (1⁄2 , 1⁄2). One of the investors chooses the riskless portfolio on

both budgets, while the other exploits the unequal prices to choose more of the second asset, thus obtaining

a higher expected value. We have x1 ≺E x̂1 and x1 P x̂2, and at the same time x̂2 P̂ x1, and as there are no
observations to support R̂SSD ⊵RA RSSD we conclude that RSSD ⊳RA R̂SSD.

�e example Figure 3.(b) shows the choices of two investors which lead to the conclusion that they are

similar. Figure 3.(c) shows two sets of choices which are incomparable: Here, one investor, R, is not enticed

to take any risks at moderately steep budgets, but as the price ratio increases a bit more, he suddenly accepts

risk in exchange for a high expected value. �e other investor chooses a moderate risk in all four situations.

In e�ect, we have RSSD ⊵RA R̂SSD based on the observations on the le�, and R̂SSD ⊳RA RSSD based on the

observations on the right. See also Figure 8 in the appendix for four examples of recovered preferences from

experimental choice data. For example, the subject shown in 8.(a) is revealed more risk averse than those in

(b)-(d), while the subject shown in 8.(d) is incomparable to those in (b) and (c).

4 application

4.1 Preliminaries

�eorem 2 provides a testable condition for Ssd-rationalisation. If an investor does not satisfy Ssd-Garp (or

not even Garp), we would like to have a test for “almost optimising” behaviour, or a measure for the severity

of the violation of the axiom. One such measure is the Afriat E�ciency Index (Aei, Afriat 1972) or Critical

Cost E�ciency Index, which is arguably the most popular of such measures. Reporting the Aei is a standard

in experimental economics.5

To obtain the Aei for Garp, budgets are shi�ed towards the origin until a set of observations satis�es

Garp. We will use the same idea to measure e�ciency of choices in terms of Ssd-Garp: For e ∈ [0, 1],

de�ne the relations R0(e) and P0(e) as x i R0(e) x j if e pix i ≥ pix and x i P0(e) x j if e pix i > pix, and let
R(e) = (R0(e))+ be the transitive closure. �e relation ≿SSD (e) is de�ned as x ≿SSD (e)y if e x ≿SSD (e) y.
�en de�ne RSSD(e) and PSSD(e) accordingly as is Eq. (1). We then say that Ω satis�es Ssd-Garp(e)

5See, for example, Sippel (1997), Mattei (2000), Harbaugh et al. (2001), Andreoni and Miller (2002), Février and Visser (2004),
Choi et al. (2007b), Fisman et al. (2007).
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Figure 3: Example of the comparative approach based on revealed preference relations. All choices satisfy Ssd-Garp for the
probability vector π = (1⁄2 , 1⁄2). �e choices by investor R are shown as , and the choices by investor R̂ as . In (a), R is revealed
more risk averse than R̂. In (b), the two investors have similar preferences. In (c), the two investors are incomparable.
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if [not x i PSSD(e) x j] whenever x j RSSD(e) x i . �en the Ssd-Aei is the largest number e such that Ssd-
Garp(e) is satis�ed. �e Aei, of course, is de�ned in the same way, applied to the R relation.
Note that the Aei can be interpreted as a measure of wasted income; that is, an investor with an Aei of,

say, 0.9 could have obtained the same level of utility by spending only 90% of what he actually spent to

obtain this level. Also note that this interpretation is practically the same when using the Ssd-Aei. Suppose

a subject satis�es Garp, such that the Aei is 1, but the Ssd-Aei is .95. �en at least one choice x i must be
strictly preferred to a portfolio y which is preferred to x i , that is, e pix i > pi y for all e > .95. �is portfolio
y cannot be one of the choices, as that would already violate Garp. �us, y must have Ssd over x i , and the
investor could have had at least the same utility from y as he got from x i . But once we set e to .95, x i is no
longer strictly revealed preferred to y; thus we conclude that the investor wasted 5% of his income.
Bronars (1987) suggests a Monte Carlo approach to determine the power the test has against random

behaviour. �e approximate power of the test is the percentage of random choices which violate Garp; this

can also be applies to Ssd-Garp. A high power does not, however, imply that the power remains high once

we “allow” investors to deviate from 100% e�ciency. �is is also related to the problem that there is no

natural de�nition for what constitutes a “high” or “low” Aei. But it is important to know what e�ciency

levels can be considered as high enough when screening the data for e�ciency before further analytical

steps are taken. Heufer (2012b) provides a detailed discussion of this point together with a procedure based

on Monte-Carlo simulations and the reduction of the power the test has against random behaviour to

determine which set of observations can be considered close enough to Garp. �is can easily be adopted for

Ssd-Garp. For the application to data in Section 4.2 we use the “measure of success” adaptation in Heufer

(2012b) to determine which subjects to use. It is based on Selten’s (1991) measure of predictive success for

area theories and maximises the di�erence between the fraction of subjects and the fraction of random

choice sets accepted as close enough to an axiom based on the e�ciency index.

4.2 Data Analysis

We are using data by Choi et al. (2007a); for a detailed description the reader is referred to their article.

Choi et al. asked ninety three subjects to choose one portfolio on each of ��y budget sets. In the symmetric

treatment, the two assets paid o� with probabilities (π1, π2) = (1⁄2 , 1⁄2). In the asymmetric treatment, the

two assets paid o� with probabilities (π1, π2) = (1⁄3 , 2⁄3). In one of the sessions the probabilities were

(π1, π2) = (2⁄3 , 1⁄3) which is taken into account.

Hence, for each subject, we observe N = 50 portfolio choices on budgets of the form B(pi) = {x ∈ R2+ ∶
pix = 1} for i = 1, . . . ,N . �ere were L = 2 states, and the probabilities which with each state occurred were
known by the subjects and remained �xed throughout the experiment. �e only thing that changed between

choices were the price vectors pi (and, strictly speaking, wealth, which is here used to normalise prices),
which were randomly drawn from a given distribution.

Sixteen of the subjects satis�es Garp, but even those subjects do not satisfy Ssd-Garp.6 Like Choi

et al. (2007a), we therefore compute e�ciency indices for the subjects and for generated sets of random

choices. Figures 4 and 5 show the distribution of the Ssd-Aei for subjects and random choices, for the two

di�erent treatments, based on 1860 random choice sets. While most subjects in the asymmetric treatment

show substantially higher Ssd-e�ciency than random choices, a notable fraction of 41.3% (17.39%) has

6Note that there are minor rounding errors in the data, which can lead to manymore Garp violations if income is not adjusted.
One of the Garp-consistent subjects has an Ssd-Aei of .7341, which is one of the lowest of all subjects in the asymmetric treatment.
�e choices indicate that this subject treated x1 and x2 as homogeneous goods despite the asymmetric probabilities. �is highlights
the importance of testing Ssd-Garp.
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an e�ciency level of less than .9 (.8), while this is the case for only 21.28% (12.77%) of subjects in the

symmetric treatment. Subjects in the symmetric treatment have generally somewhat higher e�ciency levels,

but stochastic dominance is a rather simple concept with equal probabilities. It might indicate that a few

subjects have some minor di�culties applying the concept of stochastic dominance in the asymmetric case.
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Figure 4: Ssd-Aei for symmetric treatment: shows the distribution for random choices, for actual subjects. Data from
Choi et al. (2007a).
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Figure 5: Ssd-Aei for asymmetric treatment: shows the distribution for random choices, for actual subjects. Data from
Choi et al. (2007a).

Tables 1 and 2 summarise some results. For the symmetric treatment, based on the procedures described

in Heufer (2012b), we should consider an Aei and and Ssd-Aei of ē = .8401 as su�cient. For the asymmetric
treatment, these values are ē = .8396 for the Aei and ē = .7791 for the Ssd-Aei. We require that subjects
satisfy both requirements.

We compare the choices of subjects corrected by their individual Ssd-Aei-level, that is, we base the
comparison on the RSSD(e) relation, where e is the subject’s Ssd-Aei.7 With 41 accepted subjects for the
symmetric treatment (39 for the asymmetric treatment) we have 1640 (1482) comparisons. In 63.54% of

7We subtract an additional .001 from the e�ciency level, as the computation of the e�ciency levels is only an approximation.
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all cases we �nd that one of the subject is revealed less or more risk averse than the other (54.25% for the

asymmetric treatment). In 8.29% (12.96%) of the cases, neither subject is partially more risk averse than

the other, that is, these subjects have similar preferences. In 28.17% (32.79%) of all cases, both subjects are

partially revealed preferred to each other, rendering them incomparable.

We also compare subjects at the minimum Ssd-Aei-level of each pair of subjects, that is, we apply the

same (low) e�ciency standard to both of them, which somewhat increases the fraction of subjects who are

comparable. Tables 1 and 2 summarise these main results.

symmetric treatment

aei ssd-aei both

efficiency requirement ē .8401 .8401
no. of subjects with e ≥ ē 41 41 41

correlation between pearson spearman rank

subjects’ aei and ssd-aei .9954 .9936
random aei and ssd-aei .9811 .9786

of those subjects which satisfy ē requirements:

correlation between pearson spearman rank

aei and ssd-aei .9721 .9904

comparability of risk aversion more/less neither both

fraction at individual ssd-aei 63.54% 8.29% 28.17%
fraction at minimum ssd-aei 63.66% 20.73% 15.61%

Table 1: Summary statistics for the symmetric treatment with (π1 , π2) = (1⁄2 , 1⁄2). See text for a description. Data from Choi et al.
(2007a).

Choi et al. (2007a) estimate parameters α and ρ of a utility function U ∶ RL+ → R, where U(x) =

min{(π2/π1) α u(x1) + u(x1), u(x1) + (π2/π1) α u(x2)} and u ∶ R+ → R takes the form of a power utility
function u(xi) = x1−ρ

i /(1 − ρ). If α > 1, this utility function exhibits disappointment aversion (Gul 1991).

�us, α is a measure of disappointment aversion, and ρ is the Arrow-Pratt measure of relative risk aversion.
We compare all subjects to choices generated by maximising the utility function U for di�erent parame-

ters. As parameters, we choose the α and ρ for di�erent percentiles, that is, we use α and ρ such that 5%,
25%, 50%, 75%, and 95% of all subjects have the same or lower individual estimates. Table 3 shows the result

for the symmetric treatment for which we �nd that the nonparametric comparison corresponds very well to

the parameter estimates. For example, using the median α and ρ we �nd that at individual Ssd-Aei-levels
31.71% of subjects are less risk averse, 9.76% of subjects have similar preferences, and 34.15% of subjects are

more risk averse. Table 4 shows the same result for the asymmetric treatment, where only 2.56% of subjects

are less risk averse while 58.97% of subjects are more risk averse than the preferences described by a utility

function with median parameters.

As Choi et al. (2007a) estimate a two-parameter utility function, they cannot represent risk aversion

as a single parameter. �ey therefore compute a risk premium r for every subject, which is the fraction of
initial wealth that gives the same utility as a lottery with 50-50 odds of winning or losing the initial amount.

We can compare the ranking of subjects’ risk aversion obtained by r with the nonparametric interpersonal
comparison. If of two subjects, the �rst has a higher r than the second, then ideally the �rst subject is
revealed more risk averse than the second. If this is not the case, and the second subject is revealed more
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asymmetric treatment

aei ssd-aei both

efficiency requirement ē .8396 .7791
no. of subjects with e ≥ ē 42 40 39

correlation between pearson spearman rank

subjects’ aei and ssd-aei .7192 .6671
random aei and ssd-aei .8866 .8585

of those subjects which satisfy ē requirements:

correlation between pearson spearman rank

aei and ssd-aei .6653 .6967

comparability of risk aversion more/less neither both

fraction at individual ssd-aei 54.25% 12.96% 32.79%
fraction at minimum ssd-aei 44.26% 35.63% 20.11%

Table 2: �e same summary statistics as in Table 1, here for the asymmetric treatment with (π1 , π2) = (1⁄3 , 2⁄3). Data from Choi
et al. (2007a).

symmetric treatment

crra subject risk aversion
percentile α ρ less neither more both

5th: 1.000 0.048 0.00% 0.00% 100.00% 0.00%
25th: 1.000 0.165 0.00% 7.32% 87.80% 4.88%
50th: 1.179 0.438 31.71% 9.76% 34.15% 24.39%
75th: 1.477 0.794 68.29% 12.2% 4.88% 14.63%
95th: 2.876 3.871 80.49% 9.76% 0.00% 9.76%

Table 3: Nonparametric comparison of subjects’ risk aversionwith a choices generated by a utility functionwith di�erent parameters,
here for the symmetric treatment. See text for a description. Data from Choi et al. (2007a).

asymmetric treatment

crra subject risk aversion
percentile α ρ less neither more both

5th: 1.000 0.048 0.% 2.56% 92.31% 5.13%
25th: 1.000 0.165 0.% 2.56% 82.05% 15.38%
50th: 1.179 0.438 2.56% 17.95% 58.97% 20.51%
75th: 1.477 0.794 41.03% 20.51% 17.95% 20.51%
95th: 2.876 3.871 56.41% 0.00% 2.56% 41.03%

Table 4: �e same statistics as in Table 3, here for the asymmetric treatment. Data from Choi et al. (2007a).
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risk averse than the �rst or both have similar preferences, then the di�erence ranking of the two subjects by

r should be small. Table 5 shows how o�en the ranking of two subjects, of which one is revealed more risk
averse than the other, di�er by more than 1, 2, 4, 8, and 12 ranks.

For the symmetric treatment, a measure of risk aversion can also be obtained by computing the share of

tokens allocated to the cheaper asset. �e higher the share, the less risk averse a subject should be. Table 5

also shows how o�en the ranking of two subjects di�ers by this measure of risk aversion, where we use the

average share of tokens and call this measure r̃.

symmetric treatment

by more than . . . ranks
fraction of comparisons which 0 1 2 4 8 12

disagree with ranking by r 23.55% 20.04% 17.56% 14.26% 8.88% 6.20%
disagree with ranking by r̃ 23.84% 21.70% 19.18% 15.00% 9.47% 6.71%

asymmetric treatment

by more than . . . ranks
fraction of comparisons which 0 1 2 4 8 12

disagree with ranking by r 27.36% 25.05% 22.02% 17.33% 11.12% 7.94%

Table 5: Di�erence in ranking of subjects by measures of risk aversion and their nonparametric comparisons. See text for a
description.

Tables 6 and 7 in the appendix give the complete list of interpersonal comparisons between all subjects

in the symmetric and asymmetric treatment, respectively, at individual Ssd-Aei-levels. Figure 8 in the

appendix shows examples of revealed preferred and revealed worse sets of four di�erent subjects based on

the extended relation RSSD. �e �rst one is revealed more risk averse than most other subjects, the second

on is revealed less risk averse than most other subjects. �e third one is an intermediate case which is similar

to several other subjects, and revealed more and revealed less risk averse to some others. �e last one is a

subject that is incomparable with several others. �e last one is particularly interesting as it nicely illustrates

why some subjects are not comparable: �is subject exhibits almost risk neutrality around the 45○ line, with
a sudden sharp increase in risk aversion as the amount of any assets drops below 15.

5 discussion and conclusion

We have provided a method to account for �rst and second order stochastic dominance when analysing

choice under uncertainty. �is allows to test if there exists a well behaved utility function which rationalises

such data and obeys stochastic dominance, and to extend the revealed preference relations recovered from

such data. �e application to the experimental data of Choi et al. (2007a) shows that while most subjects are

reasonably close to such Ssd-rationality, although some clearly are not. On the one hand, the result therefore

con�rms previously drawn conclusions to a large extent. On the other hand, it shows that there are, albeit

few, subjects who come close to Garp but exhibit strong violations of Ssd-rationality. �is highlights that it

is important to apply the tests for Ssd.

�is analysis enabled us to provide a way to make Yaari’s (1969) idea for comparative risk aversion

operational based on revealed preferred and revealed worse sets. �e central rationalisability theorem shows

that if and only if the conditions for “revealed more risk averse” are satis�ed, there exist utility functions
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which rationalise the two observations on two investors, such that the utility function of the more risk averse

investor exhibits greater risk aversion for every portfolio. Furthermore there do not exist rationalising utility

functions which exhibit greater risk aversion for the less risk averse investor.

�e theorem also shows that it is su�cient to only compare a �nite number of portfolios, namely those

observed as choices, even though the revealed more risk averse relation is de�ned in terms of the revealed

preferred and worse sets of all portfolios. It therefore leads to a nonparametric way to compare the risk

aversion of two investors without relying on particular forms of utility.

Testing the experimental data of Choi et al. (2007a) for consistency with Ssd-rationality shows that,

compared to random choices, strong consistency ofmost subjects is con�rmed. �e nonparametric approach

to comparative risk aversion is useful as an alternative or complement to parametric estimation of risk

aversion. It can serve as a robustness check for the parametric approach; the analysis in Choi et al. (2007a)

is found to be quite robust for both treatments, but more so for the symmetric treatment. Obviously a

nonparametric approach does not o�er a distribution of parameters to describe risk attitudes in a given

sample. However, it can be used to compute the fraction of investors which are less or more risk averse than

any given preference and can therefore also o�er a characterisation of risk preferences in a population.
Interpersonal comparisons based on revealed preferred and worse sets can also be usefully applied to

other aspects of preferences, such as sense of fairness (Karni and Safra 2002a,b) or impartiality (Nguema

2003). For example, Karni and Safra (2002b) apply Yaari’s (1969) notion of “is more risk averse than” to the

concept of “has a stronger sense of fairness than”. �e results here can be translated to suit this interpersonal

comparison of the sense of fairness. A �rst step towards such an analysis has been recently made by Heufer

(2012a).
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a appendix

a.1 Arrow-Debreu Securities and General Assets

�e basic arbitrage �nancial principle has been described by Ross (1978). A clear exposition of the facts

we use here can be found in Varian (1987), based on the work of Breeden and Litzenberger (1978) who

derive “state prices” from option pricing, among others. We will only provide some intuitions for the claim

that the portfolio choice problem with Arrow-Debreu securities can be obtained by a transformation of a

(super�cially) more general problem. �at the examples here generalise follows from previous work (see

Varian 1987).

�ere are K ≥ L linearly independent general assets Y⋅,i , i = 1, . . . ,K. Asset Y⋅,i pays o� Yj,i ≥ 0 in state j,
j = 1, . . . , L. Let Y be an L ×K matrix, where column i represents state contingent payo�s of asset i and row
j represents payo�s of assets in state j. Without loss of generality, let the price of each asset Y⋅,i be 1.8 An
investor who invests an amount w > 0 chooses a portfolio y = (y1, . . . , yK)′ such that∑K

i=1 yi = w. �en the
payo� of this portfolio in state j is Yj,⋅y. Without short-selling, any state contingent payo� vector that can be
obtained by the investor is a linear combination of the assets Y⋅,i which is an a�ordable portfolio, that is, is
given by z = (z1, . . . , zL) = (∑

K
i=1 yiY1,i , . . . ,∑K

i=1 yiYL,i), such that yi ≥ 0 for i = 1, . . . ,K, and∑K
i=1 yi = w.

If short-selling is allowed (i.e. if the investor can “buy” a negative amount of some assets), the condition

yi ≥ 0 is dropped. In any case, we require that the state contingent payo� vector has no negative entries
(z j ≥ 0 for all j = 1, . . . , L), that is, we do not allow the investors to risk bankruptcy.

�e “no arbitrage” condition required in this context states that it is not possible to construct a portfolio

consisting of short- and long-positions (negative and positive amounts of assets) such that ∑
K
i=1 yi = 0,

z j ≥ 0 for all j = 1, . . . , L and z j > 0 for at least one j. As prices of assets are �xed, this condition states that
there does not exist an asset which is dominated by a linear combination of other assets. Suppose L = 2 and
K = 3, and Y⋅,1 = (6, 2), Y⋅,2 = (2, 6) are given. �ese two assets are contained in a hyperplane in R2. �en

Y⋅,3 must be contained in the same hyperplane: Suppose that this is not the case because Y⋅,3 = (3, 3), i.e. the

third asset is dominated by, for example, one half of each of the �rst and second asset. �en an investor can

short-sell two units of Y⋅,3 and use the revenue to buy one unit of Y⋅,1 and Y⋅,2 each. �en z = (2, 2) and he

obtains a payo� of 2 with certainty even though∑
K
i=1 yi = 0. See Figure 6(a).

If the no arbitrage condition holds, then all available assets are contained in an (L-1)-dimensional

hyperplane inRL. �en any state contingent payo� vector that can be obtained by spendingw on a portfolio
is a point inRL+ on or below that hyperplane, and the hyperplane itself is the e�ciency frontier. But then the
set of e�cient state contingent payo� vectors is the convex hull of the intersections of that hyperplane with

the standard basis vectors of RL. Suppose for example that L = K = 2, and Y⋅,1 = (3, 2), Y⋅,2 = (1, 6), and

w = 1. �en (4, 0) and (0, 8) are intersections of the hyperplane containing the two assets with the axes (see

Figure 6(b)), and the set of all e�cient z is given by the convex hull of these two points (as we do not allow
the risk of bankruptcy). �us the choice situation can be transformed into an equivalent situation where

the investor spends one unit of money on two Arrow-Debreu securities X⋅,1 = (1, 0) and X⋅,2 = (0, 1) with

prices 1/4 and 1/8, respectively.

�at this generalises follows from results known in the literature (e.g. Varian 1987). In the previous

example, the choice situation with general assets can be transformed into the framework of this paper by

specifying a budget with bounding hyperplane {x ∈ RL+ ∶ (1/4)x1 + (1/8)x2 = 1} if short-selling is allowed.

8One can think about this as a normalisation of asset payo�s, that is, state contingent payo�s specify what an investor gets for
investing one unit of money in the asset.
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If short-selling is not allowed, the budget set is a subset of B, in particular, the e�cient frontier of the budget
is {x ∈ RL+ ∶ (1/4)x1 + (1/8)x2 = 1 and x1 ≤ 6 and x2 ≤ 12}. See Figure 6.(c) and 6.(d) for illustrations.
As already elaborated on in Section 3, the riskless portfolio of a budget (i.e., the portfolio which pays o�

the same amount in every state) can be considered the status quo of the budget situation. Depending on the

budget and preferences, the investor either has the opportunity to improve upon the status quo, or the status

quo is optimal compared to the other alternatives in the budget. If a utility maximising investor does not

choose the riskless portfolio, then he reveals a part of his acceptance set in terms of Yaari (1969). Clearly, a

risk averse investor will not choose a portfolio which has a lower expected value than the status quo, as this

portfolio cannot o�er more certainty than the status quo and is stochastically dominated by the status quo.

Figure 7 illustrates this for L = 2 and the probability vector π = (1⁄2 , 1⁄2). �e riskless portfolio y of the budget
is on the 45○ line. �e set of portfolios with the same expected value as the riskless portfolio is indicated by
the dashed line. As y is riskless, we have that y ≿SSD z whenever y ∼E z. �us, all portfolios in the budget
with a lower expected value than y are stochastically dominated by y and will not be preferred over y by any
risk averse utility maximiser. However, some of the available alternatives with a higher expected value than

y might be preferred over y by an investor who is not too risk averse.
�e indicated choice x1 of an investor reveals that this investor prefers x1 over the riskless portfolio. In

terms of Yaari (1969), x1 is in the acceptance set of the status quo y. �en by convexity of preferences (or
concavity of the utility function), every convex combination of x1 and y must at least be weakly preferred to
y. �us, the line segment connecting x1 and y must be part of the investors acceptance set.

a.2 Proof of the Lemmata

We only consider the Ssd case here; proofs for the Fsd case are simpler.

Proof of Lemma 1 �is follows directly from the fact that every risk averse expected utility maximiser will

prefer x over y whenever x ≿SSD y: Let EUu(x) denote the expected utility of x ∈ RL+ with u ∶ RL+ → R being
a continuous, increasing, and concave utility function. �en x ≿SSD y if and only if EUu(x) ≥ EUu(y) for
all such u. Suppose z = µx + (1 − µ)y for µ ∈ (0, 1); then EUu(x) ≥ EUu(y) implies EUu(z) ≥ EUu(y),
and thus z ≿SSD y.

Proof of Lemma 2
(i) Letma(x , i) denote the maximal value of yi such that y ≿SSD x. �en the set

HC(x) = {y ∈ RL
+ ∶ min({y1, . . . , yL}) ≥ min({x1, . . . , xL})

and yi ≤ ma(x , i) for all i = 1, . . . , L}

is a hypercube in RL+ which intersects the hyperplane P(x , ∼E) (except when xi = x j for all i , j =
1, . . . , L, in which case the two sets only share the point x). �enP(x , ≿SSD ∩ ∼E) ⊆ HC(x)∩P(x , ∼E).
By construction of M̂(x), HC(x) ∩P(x , ∼E) = CH(M̂(x)) and y ≿SSD x for all y ∈ M̂(x). �en by
Lemma 1, CH(M̂(x)) ⊆ P(x , ≿SSD ∩ ∼E), and the �rst part of Lemma 2 follows.

(ii) It is obvious that P(x , ≿SSD) ⊆ CMH(x , ≿SSD ∩ ∼E). As y ≿E x is a necessary condition for y ≿SSD x,
consider any y ≻E x, y ∉ CMH(M̂(x)), and suppose y ≿SSD x. Let y j = max(y) and let z ∼E x be
such that zi = yi for all i ≠ j and z j < y j. �en F(ξi , y) = F(ξi , z) for all ℓ < n. �us if y ≿SSD x then
z ≿SSD x. But that contradicts the �rst part of Lemma 2.
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Figure 6: (a): Example with three general assets where the no arbitrage condition does not hold. (b): Example with two assets and
no arbitrage. (c): Possible state-contingent payo�s achievable with w = 1 and budget for Arrow-Debreu securities for the example
in (b). (d): Same as in (c), but without short-selling.
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Figure 7: Example with probability vector π = (1⁄2 , 1⁄2). �e portfolio y is riskless as it pays o� the same amount in both states.
�e dashed line shows the set of portfolios with the same expected value as y. A risk averse utility maximiser will only choose y or
alternatives to the right of y, depending on his degree of risk aversion. If y is interpreted as a status quo, then by convexity of
preferences, the line segment connecting y and x 1 must be part of the investors acceptance set, that is, the gambles he is willing to
accept.
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a.3 Proof of �eorem 2

Again, we only proof the Ssd case here. LetUSSD ⊂U be the set of all utility functions which are consistent
with the ≿SSD ordering, that is, if u ∈USSD, then u(x) ≥ u(y) whenever x ≿SSD y. Note thatUSSD ≠ ∅ (see

also the proof of Lemma 1).

Lemma 3 If u ∈USsd-rationalisesΩ, then u ∈USSD. If u ∈USSD rationalisesΩ, then u also Ssd-rationalises
Ω.

Proof Recall the de�nition of RSSD as (R∪ ≿SSD)
+. �us, ≿SSD ⊆ RSSD and the �rst statement follows. For

the second statement, suppose that u ∈USSD rationalises Ω. �en u(x) ≥ u(y)whenever x R y, and because
u ∈USSD, we also have u(x) ≥ u(y) whenever x ≿SSD y. �en by transitivity of R, ≿SSD, and RSSD, the result
follows.

Proof of �eorem 2
(1)⇒ (2): �e proof is very similar to the proof of Afriat’s �eorem that can be found in Varian (1982) and

we omit it.

(2)⇒ (1): �e existence of a utility function u ∈U which rationalises Ω follows from�eorem 1 because

Ssd-Garp implies Garp. Suppose that Ω satis�es Ssd-Garp (and therefore Garp) but there does not exist

a utility function which Ssd-rationalises Ω. �en by Lemma 3, there does not exist a u ∈ USSD which

rationalises Ω. �en for all u ∈USSD, it must be the case that for some set of portfolios y1, y2, y3, . . ., either
(i) [u(x) < u(y1) or u(x) < u(y2) or u(x) < u(y3) or . . .] and [x R yi for some x and for all i =
1, 2, 3, . . .]; or

(ii) [u(x) ≤ u(y1) or u(x) ≤ u(y2) or u(x) ≤ u(y3) or . . .] and [x P yi for some x and for all i =
1, 2, 3, . . .]; or

(iii) [u(y1) < u(x) or u(y2) < u(x) or u(y3) < u(x) or . . .] and [yi R x for some x and for all i =
1, 2, 3, . . .]; or

(iv) [u(y1) ≤ u(x) or u(y2) ≤ u(x) or u(y3) ≤ u(x) or . . .] and [yi P x for some x and for all i =
1, 2, 3, . . .].

Otherwise, some u ∈USSD rationalises Ω, and by Lemma 3 Ssd-rationalises Ω.

Note that by de�nition x R y implies that x ∈ {x i}Ni=1, that is, x is one of the portfolios observed as
choices.

In case (i), suppose that x = x i and x i R0 y j for all j = 1, 2, 3, . . ., and u(x i) < u(y j) for at least one
j. �en y j ≻SSD x i , and therefore y j ∈ P(x i , ≻SSD) and by Lemma 2, P(x i , ≿SSD) = CMH(M̂(x i)), thus
y ∈ CMH(M̂(x i)). But y j ∈ Bi , and B(pi) is a hyperplane which separates RL+ into two half-spaces. �en
as y j ∈ CMH(M̂(x i)), at least one vertex of CMH(M̂(x i))must be in intBi . By construction, the vertices

of CMH(M̂(x i)) consist only of a subset of τ(Ω). �us, there is at least one tk ∈ τ(Ω) such that tk ∈ intBi ,

and therefore x i P0 tk . But tk ≿SSD x i and therefore tk RSSD x i which violates Ssd-Garp, a contradiction.
Suppose instead that x i R x j R0 y j. �en by the same arguments as in the preceding paragraph we �nd

that x j P0 tk and tk ≿SSD x i . But then tk RSSD x i and x i P0 tk which violates Ssd-Garp, a contradiction.
Case (ii) is quite similar, except that y j ∈ CMH(M̂(x i)). �en if x i P0 y, tk ∈ intBi follows because

y ∈ intBi , and similarly for x i P x j R0 y j and x i R x j P0 y j.
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In case (iii), as yi R x, we must have yi = x i for some observed portfolio choice x i . �en x ≻SSD x i and
x i R x. �at this violates Ssd-Garp follows from the same arguments as in case (i).
In case (iv), we have x ≿SSD x i and x i P x. �at this violates Ssd-Garp follows from the same arguments

as in case (iv).

a.4 Proof of �eorem 2

Lemma 4 Suppose Ω and Ω̂ satisfy Ssd-Garp. �en there exist choices of the two investors, x j and x̂ i , such
that [x̂ i R̂SSD x j and x j PSSD x̂ i] or [x i RSSD x̂ j and x̂ j P̂ x i] if and only if RP(x0,RSSD)∩RW(x0, R̂SSD) ≠ ∅.

Proof We will �rst show that the Lemma holds for R and R̂ instead of RSSD and R̂SSD. By Garp there is
no x ∈ RP(x0, R̂) such that x0 ≥ x. �en by the de�nition ofRW(⋅, R), for all x ∈ RW(x0, R), pix i ≥
pix⇔ x ∈ B(pi) for at least one i = 1, . . . ,N . As B(pi) is a hyperplane and, by Proposition 1,RP(x0, R̂) is
a convex polytope whose vertices are x0 and all x̂ j R̂ x0, there is at least one x̂ j ∈RP(x0, R̂) ∩RW(x0, R).
By de�nition, x̂ j ∈RW(x0, R) implies that x̂ j, if chosen by consumer R, cannot be revealed preferred to

x0 without violating Garp: If x̂ j R x0, then x̂ j R xk and xk P x̂ j. But x̂ j R̂ x0, thus x̂ j R̂ xk . �en x̂ j R̂ xk and
xk P x̂ j; and similarly for [x i R x̂ j and x̂ j P̂ x i]. �us the Lemma holds for R and R̂. �at it holds for RSSD
and R̂SSD (as stated) follows from the fact that ≿SSD is the same for both investors.

Lemma 5 Suppose Ω and Ω̂ satisfy Ssd-Garp. �en RSSD ⊵RA R̂SSD if and only if δ(Ω, Ω̂) = 1.

Proof �e theorem states that RSSD ⊵RA R̂SSD⇔ δ(Ω, Ω̂) = 1. It is obvious that δ(Ω, Ω̂) = 1⇒ RSSD ⊵RA
R̂SSD. We will show that δ(Ω, Ω̂) = 0 implies [not RSSD ⊵RA R̂SSD].

Suppose δ(Ω, Ω̂) = 0 and RSSD ⊵RA R̂SSD. �en there does not exist a x i ≾E x̂ j such that

x i RSSD x̂ j P̂SSD x i , but stillRPL(z0, RSSD) ∩RWL(z0, R̂SSD) ≠ ∅. �en by Proposition 1 and Lemma 4,
there is an t i ∈ τ(Ω) such that t i ∈RPL(z0, RSSD) ∩RWL(z0, R̂SSD). By Ssd-Garp and�eorem 2, we
cannot have z0 ≻SSD t i , and because z0 ≻E t i , we cannot have t i ≿SSD z0. �en either t i = x i R z0 or there is
an x i such that t i ≿SSD x i R z0; in either case, x i ∈RPL(z0, RSSD) ∩RWL(z0, R̂SSD).
As x i ∈ RWL(z0, R̂SSD) and [not z0 ≿SSD t i], there must be some t̂ j R̂SSD x i , such that either (i)

z0 R̂SSD t̂ j or (ii) z0 ≿SSD µ t̂ j + (1 − µ)x i for some µ ∈ (0, 1). In case (ii), t̂ j = x̂ j, x̂ j ≻E z0, and x̂ j R̂ x i ; but
then δ(Ω, Ω̂) = 1, a contradiction. �us, z0 R̂SSD t̂ j. Because t̂ j = x̂ j = z0 implies δ(Ω, Ω̂) = 1, z0 R̂SSD t̂ j

implies z0 ≿SSD t̂ j as z0 cannot be preferred to t̂ j in any other way.
�en x i RSSD z0 and z0 ≿SSD t̂ j imply x i RSSD t̂ j ≿SSD x̂ j, where t̂ j ∈ M̂(x̂ j). But then x i RSSD x̂ j, thus

δ(Ω, Ω̂) = 1 implies that x i ≻E x̂ j. �en t̂ j ∼E x̂ j implies [not t̂ j ≿SSD x i], thus x̂ j R̂SSD x j.

To summarise, we have z0 ≿SSD x i , x i ≻E x̂ j, x i RSSD x̂ j, and x̂ j R̂SSD x i . �en with

P(z0, ≾SSD) ∩P(x i , ≺E) ⊆ P(x i , ≺SSD),

we obtain that z0 ≿SSD x̂ j and x i ≻E x̂ j implies x i ≻SSD x̂ j. But x̂ j R̂SSD x i , which contradicts Ssd-Garp.

Proof of �eorem 3 By assumption, the data satisfy Ssd-Garp, thus Ssd-rationalising utility functions exist.
�e equivalence of (i) and (ii) for all three parts of the theorem follows immediately from Lemma 5.
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By de�nition of the revealed preferred and worse sets and rationalisation of a utility function, if

RPL(y, RSSD) ∩RWL(y, R̂SSD) = x, then for all u and û which Ssd-rationalise Ω and Ω̂, respectively,
u(x) > u(y) and û(x) < û(y). Conversely, if for some x ≺E y, all u and û which Ssd-rationalise Ω and Ω̂
must be such that u(x) > u(y) and û(x) < û(y), then x ∈RPL(y, RSSD) and x ∈RWL(y, R̂SSD). �us,
(ii)⇔ (iii) for all three parts of the �eorem.

a.5 Tables: Interpersonal Comparisons of Subjects

Tables 6 and 7 show the complete list of interpersonal comparisons between all subjects in the symmetric

and asymmetric treatment, respectively.

a.6 Figure: Examples of Revealed Preferred and Worse Sets

Figure 8 shows examples of revealed preferred and worse sets for some subjects. (a) Subject number 23

(ID 304): A subject who is revealed more risk averse than most other subjects. (b) Subject number 26 (ID

307): A subject who is revealed less risk averse than most other subjects. (c) Subject number 8 (ID 208):

A subject who is revealed more risk averse and revealed less risk averse than some other subject and has

similar preferences as many other subjects. (d) Subject number 5 (ID 205): A subject who is incomparable

with some other subjects. Data from Choi et al. (2007a).
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Symmetric Treatment: Part I

2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23

2 – – – – – – – –
3 – – – – – – – – –
4 – – – – – – – – – – –
5 – – – – – – – – – – –
6 – – – – – – – – –
7 – – – – – –
8 – – – –
9 – – – – – –
10 – –
12 – – – –
13
14 – – – – – – – –
15 – – – – – – – – – – – – – – – –
16 – – –
17 – – – – – –
18 – – – – – – – – – – – – –
19 – – – –
20 – – – – – –
21 – – –
22 – – – –
23 – – –
24 – – – – – – – – – – – – – – – – – – – –
25 – – – –
26 –
27 –
28 – – – –
30 – – – – –
31 – – – – –
32 – – – – –
33 – – – – – – – –
34 – – – – – – – – – –
35 – –
36 – – –
37 – –
38 – – – – –
39 – – – – – – – – –
41 – – – – – –
42 – – – – –
43
45 – – – – – –
46 – – – – – – – – – – – –

Table 6: Part I of the “more risk averse than” table for the symmetric treatment with π = (1⁄2 , 1⁄2) at individual Ssd-Aei-level.
A indicates that the row subject is revealed more risk averse than the column subject, indicates that the column subject is
revealed more risk averse than the row subject, and indicates that neither of the subjects is partially revealed more risk averse to
the other. A “–” indicates that both subjects are partially more risk averse than the other. Subject numbers correspond to subject
IDs 201-219 and 301-328, i.e. number 20 has ID 301 etc. Data from Choi et al. (2007a).
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Symmetric Treatment: Part II

24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 41 42 43 45 46

2 – – – – – – – –
3 – – – –
4 – – – – – – – – – –
5 – – – – – – – – – –
6 – – – – – –
7 – –
8 – – –
9 – – –
10 – – – –
12 – – – – –
13 – – –
14 – – – –
15 – – – – – – – – – – –
16 – – –
17 – – – – – – – – –
18 – – – – – – – –
19 – – – – –
20 – – – –
21 – – – –
22 – – – –
23 – – –
24 – – – – – – – – – – – – – – –
25 – – –
26 –
27 – – – –
28 – – – – –
30 – – – –
31 – – –
32 – – – –
33 – – – –
34 – – – – – – –
35 –
36 –
37 – –
38 – – – – – –
39 – – – – – – – – – –
41 – – – – – –
42 – – – – –
43 –
45 – – – – – – –
46 – – – – – – – – – – –
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Asymmetric Treatment: Part I

1 2 3 4 5 7 8 9 10 11 13 14 15 16 17 18 19 20 22 23

1 – –
2 – – – – – – – –
3 – – – – – – – – –
4 – – – –
5 – – – – – – –
7 – – – – – – – – – – –
8 – – – – – – – – – –
9 – – –
10 – – – – – – – –
11 –
13 – – – – – – – – – – – – – –
14 – – –
15 – – – – – – – – – – – –
16 – – – – – –
17 – – –
18 – –
19 – – – – – –
20 – – – –
22 – – – – – – –
23 – – – – – – – –
24 – – – – –
26 – – – – – – – –
27 – – – –
28 – – – – – – –
29 – – – – – –
30 – – – –
31 – – – – –
32 – – – – – – – –
33 – – – – – – – – – –
34 – – – – – – – – – –
36 – – – – – – – – – – – –
37 –
38 – – – –
39 – – – – – – – –
41 – – – –
42 – – – – – – – –
43 – – – – –
44 – – – –
46 – – – – – – – –

Table 7: Part I of the “more risk averse than” table for the asymmetric treatment with π = (1⁄3 , 2⁄3) at individual Ssd-Aei-level.
Subject numbers correspond to subject IDs 401-417, 501-520, and 601-609, i.e. number 18 has ID 501, number 38 has ID 601, etc.
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Asymmetric Treatment: Part II

24 26 27 28 29 30 31 32 33 34 36 37 38 39 41 42 43 44 46

1 – – – –
2 – – – – – – – –
3 – – – – – – – –
4 – – – – – – –
5 – – – – –
7 – – – – – – – –
8 – – – – – – – – – – –
9 – –
10 – – – – – –
11
13 – – – – – – – – – – – – –
14 – – –
15 – – – – – – – – – –
16 – – – – – – –
17 – – –
18 – –
19 – – – – – – – – –
20 –
22 – – – – – –
23 – – – – – – – –
24 – – – – – –
26 – – – – – –
27 – – – –
28 – – – – – –
29 – – – – –
30 – – – – –
31 –
32 – – – – – – – –
33 – – – – – – –
34 – – – – – – – – – – –
36 – – – – – – – – –
37
38 – – –
39 – – –
41 – – – – – – – –
42 – – – – – – – – – – –
43 – – – – – – –
44 – – – – – –
46 – – – – – – – – – –
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Figure 8: Examples of subjects’ revealed preferred and revealed worse sets, from the symmetric treatment. (a) Subject number 23
(ID 304): A subject who is revealed more risk averse than most other subjects. (b) Subject number 26 (ID 307): A subject who is
revealed less risk averse than most other subjects. (c) Subject number 8 (ID 208): A subject who is revealed more risk averse and
revealed less risk averse than some other subject and has similar preferences as many other subjects. (d) Subject number 5 (ID
205): A subject who is incomparable with some other subjects. Data from Choi et al. (2007a).
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